Topic for discussion:

Android:
Monitor
Network
Connectivity

Presented by :
Rohan Pambhar |
(Android Engineer)




Preface

e Most android applications use an internet
connection, and as android developers, we
always implement a mechanism that handles
the internet connection and the application
state based on the internet connectivity.

e \We mostly struggle to handle this mechanism to
make it work seamlessly without affecting so
much of our android code.

e So, herein this post, I'll be sharing a proper way
to handle the internet connection state in
application and update your Ul accordingly



Connectivity Manager class

e The ConnectivityManager provides an API that
enables you to request that the device connects
to a network based on various conditions,
including device capabilities and data transport
options.

e The callback implementation provides
information to your app about the device's
connection status and the capabilities of the
currently connected network.

e The API lets you determine whether the device is
currently connected to a network that satisfies
your app’s requirements.




Easy to implement Connectivity Manager

e Configure a network request
o Declare a NetworkRequest that describes
your app’s hetwork connection needs. The
following code creates a request for a network
connection to the internet and uses a Wi-Fi or
cellular connection for the transport type.

val networkRequest = NetworkRequest.Builder()
.addCapability(NetworkCapabilities.NET_CAPABILITY_INTERNET)

.addTransportType(NetworkCapabilities.TRANSPORT_WIFI)
.addTransportType(NetworkCapabilities.TRANSPORT_CELLULAR)

.build()

e Use NET_CAPABILITY_NOT_METERED to
determine whether the connection is expensive.


https://developer.android.com/reference/android/net/NetworkRequest

e Configure a network callback

o When you register the NetworkRequest with
the ConnectivityManager, you must implement
a NetworkCallback to receive notifications
about changes in the connection status and
network capabilities.

o The most commonly implemented functions in
the NetworkCallback include the following:

= onAvailable()
= onlLost()
= onCapabilitiesChanged()


https://developer.android.com/reference/android/net/ConnectivityManager.NetworkCallback
https://developer.android.com/training/monitoring-device-state/reference/android/net/ConnectivityManager.NetworkCallback#onAvailable(android.net.Network)
https://developer.android.com/training/monitoring-device-state/reference/android/net/ConnectivityManager.NetworkCallback#onLost(android.net.Network)
https://developer.android.com/training/monitoring-device-state/reference/android/net/ConnectivityManager.NetworkCallback#onCapabilitiesChanged(android.net.Network,%20android.net.NetworkCapabilities)

private val networkCallback = object : ConnectivityManager.NetworkCallback() {
// network is available for use
override fun onAvailable(network: Network) {
super.onAvailable(network)

// Network capabilities have changed for the network
override fun onCapabilitiesChanged(
network: Network,
networkCapabilities: NetworkCapabilities
) |
super.onCapabilitiesChanged(network, networkCapabilities)
val unmetered = networkCapabilities.hasCapability(NetworkCapabilities.NET_CAPABILITY_

// lost network connection
override fun onLost(network: Network) {
super.onLost(network)




e Register for network updates

o After you declare the NetworkRequest and
NetworkCallback, use the requestNetwork()
or registerNetworkCallback() functions to
search for a network to connect from the
device that satisfies the NetworkRequest. The
status is then reported to the NetworkCallback.

val connectivityManager = getSystemService(ConnectivityManager::class.java)

connectivityManager.requestNetwork(networkRequest, networkCallback)



https://developer.android.com/reference/android/net/ConnectivityManager#requestNetwork(android.net.NetworkRequest,%20android.net.ConnectivityManager.NetworkCallback)
https://developer.android.com/reference/android/net/ConnectivityManager#registerNetworkCallback(android.net.NetworkRequest,%20android.net.ConnectivityManager.NetworkCallback)

Important Note:

e Make sure you register a callback once in the
application's lifecycle. So | suggest registering the
event in the onCreate() method of the Application
class.

e And then, you can also notify your activities and
fragments using LiveData.

e Forthat, create a ‘Singleton’ class with a
‘MutableLivedata’ of type ‘Boolean’ to maintain its

instance throughout the application's lifecycle.

e Seethe code snippet given below.



= MutablelLiveData<Boolean>()

: LiveData<Boolean> =

(connectivityStatus: Boolean) {

(Looper.myLooper() === Looper.getMainLooper()) A{
.setValue(connectivityStatus)
} {
.postValue(connectivityStatus)
}
}
(): LiveData<Booleanp {
}




IT Agenturen



