Topic for discussion

Introduction
to Compose
Animation

Workshop hosted by Hiren
(Android Engineer)




Animation Reimagined
Compose Animation APIs

e Declarative and interruptible
e Fasyto use

e Tooling support

Jetpack
Compose



Declaring Dependencies

dependencies {
implementation("androidx.compose.animation:animation:1.2.0-betad3")

android {
buildFeatures {
compose = true

composeOptions {
kotlinCompilerExtensionVersion = "1.2.0-betaf3"

kotlinOptions {
jvmTarget = "1.8"




The diagram below helps you decide what
API to use to implement your animation.

State-based and

Need fine control over NO happens during

animation time

composition

Animating content
change in layout

Animation
My animation is infinite

Animation is the only

I'm animating multiple -
values simultaneously Animating appearance /
disappearance

source of truth

rememberinfiniteTransition
YES :

NO NO

updateTransition

Animatable

I i

AnimationState YES

AnimatedVisibility

Swapping content
based on state

nimate*AsState animateContentSize kit >
o Animate animate*AsState animateContentSize AnimatedContent or Crossfade

e For Appearance and disappearance use AnimatedVisibility

e Swapping content based on state:
o If you are crossfading content:
Crossfade
o Otherwise use
AnimatedContent

e |f the animation is infinite rememberinfiniteTransition


https://developer.android.com/jetpack/compose/animation#crossfade
https://developer.android.com/jetpack/compose/animation#crossfade
https://developer.android.com/jetpack/compose/animation#rememberinfinitetransition

Toggling Visibility - Enter and Exit

var visible by remember { mutableStateOf(true) }

Column {
Button(onClick = { visible = !visible }) {
Text("Click")

}

if (visible) {
CatIcon()

Click

AnimatedVisibility (visible) {

CatIcon()

}




AnimatedVisibility & AnimatedContent

AnimatedVisibility AnimatedContent

Enter and exit if its child Transaction between
content changes.

EnterTransition ExitTransition
fadeln() fadeOut()
slideln() slideOut()
scaleln() scaleOut()




animate*AsState Animate a single value
Animate a single value

val offsetX by animateDpAsState(
if (isOn) 512.dp else 0.dp

)

Interruptible Animation




